Different but synergistic effects of bone marrow-derived VEGFR2+ and VEGFR2−CD45+ cells during hepatocellular carcinoma progression

نویسندگان

  • Xiaolin Zhu
  • Hongyuan Zhou
  • Jingtao Luo
  • Yunlong Cui
  • Huikai Li
  • Wei Zhang
  • Feng Fang
  • Qiang Li
  • Ti Zhang
چکیده

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-associated mortality worldwide in men. Bone marrow-derived cells (BMDCs), including circulating endothelial progenitor cells, have been reported to be involved in the progression of HCC. The complexity of BMDCs inspires further interest in the study of HCC. In the present study, highly metastatic HCC models with BM function deficiency/reconstruction were established by sublethal irradiation/BM transplantation. The effects of vascular endothelial growth factor receptor-2 (VEGFR2)+ or VEGFR2-/cluster of differentiation 45 (CD45)+ BMDCs on HCC growth were evaluated. VEGFR2+ and VEGFR2-CD45+ BMDCs facilitated the recovery of BM function and promoted tumor growth, while the enhancement of tumor growth by VEGFR2-CD45+ BMDCs was independent of VEGFR2+ BMDCs. BM-derived CD45+CD133+ and VEGFR2+CD133+ cells synergistically played a role in the different stages during HCC progression. In conclusion, different types of BMDCs exhibit effects on HCC tumor growth in a coordinated manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway

Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...

متن کامل

Bone marrow derived cells in the tumour microenvironment contain cells with primitive haematopoietic phenotype

Infiltration of bone marrow derived cells is part of the angiogenic switch required for uncontrolled tumour growth. However, the nature of the tumour-infiltrating cells from bone marrow has not been fully elucidated. To investigate the phenotype of bone marrow derived cells within a tumour, we employed the Lewis lung carcinoma (LLC) murine tumour model. We followed bone marrow derivation of tum...

متن کامل

Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors.

OBJECTIVE Two types of endothelial progenitor cells (EPCs), early EPCs and late EPCs (also called endothelial outgrowth cells [EOCs]), were described in vitro previously. In this report, we dissect the phenotype of the precursor(s) that generate these cell types with focus on the markers CD34, CD133, and vascular endothelial growth factor receptor-2 (VEGFR2) that have been used to identify puta...

متن کامل

Targeting VEGFR1- and VEGFR2-expressing non-tumor cells is essential for esophageal cancer therapy

Increasing appreciation of tumor heterogeneity and the tumor-host interaction has stimulated interest in developing novel therapies that target both tumor cells and tumor microenvironment. Bone marrow derived cells (BMDCs) constitute important components of the tumor microenvironment. In this study, we aim to investigate the significance of VEGFR1- and VEGFR2-expressing non-tumor cells, includi...

متن کامل

Endothelial progenitor cells are recruited into resolving venous thrombi.

BACKGROUND The purpose of this study was to determine whether endothelial cells of bone marrow origin are involved in thrombus recanalization. METHODS AND RESULTS Irradiated mice were reconstituted with bone marrow from transgenic donors expressing green fluorescent protein (GFP) linked to the Tie2 promoter. Thrombi were formed in 2 groups of 6 mice. GFP-expressing cells were located and quan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017